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Aperiodic stochastic resonance with chaotic input signals in excitable systems
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A model of two relaxation-type nonlinear oscillators is investigated. The chaotic spike sequence generated
by the first system is used as a subthreshold input signal for the second system. When also exposed to noise,
the latter behaves as a detector of temporal patterns in the chaotic input signal. Calculation of dynamic
correlation measures shows that the information transfer between the two systems is optimized by intermediate
noise levels. This behavior represents an interesting class of aperiodic stochastic resonance~ASR! with deter-
ministic chaotic input signals. Results show that ASR is not restricted to slowly varying input signals.
@S1063-651X~97!50206-6#
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The phenomenon of stochastic resonance~SR! character-
izes a behavior wherein the response of a nonlinear syste
a weak periodic input signal is optimized by intermedia
noise levels@1#. Recently the original definition of SR ha
been generalized into cases involving slowly varying ap
odic input signals@2,3#. Theoretical studies showed that u
der the appropriate conditions the response of certain non
ear systems can be enhanced by a nonzero level of noise
this type of behavior the term aperiodic stochastic resona
~ASR! has been introduced@2#. In theoretical studies of ASR
one usually investigates the response of excitable syst
exhibiting an activation threshold, where both the subthre
old aperiodic stimulus and the noise are applied to a sin
nonlinear element. With regard to biological application
these nonlinear elements often consist of neuronal mo
like the FitzHugh-Nagumo equations or the Hodgkin-Huxl
equations. These two models were also integrated into s
ming networks of elements coupled in parallel@3#. Studies
showed that the signal detection performance in respons
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aperiodic stimuli can be enhanced by noise. ASR has a
been demonstrated experimentally in biological sensory s
tems@4#.

In this paper, ASR is studied with deterministic chao
instead of stochastic input signals. Specifically, input sign
varying on a time scale that is comparable to the charac
istic time of the responding system are investigated. Moti
tion for this work is twofold. Deterministic chaotic behavio
has been observed in a wide range of biological syste
including periodically stimulated squid giant axons, the cra
fish caudal photoreceptor as well as electrically excitable
assemblies in cardiology and neuroscience@5,6#. However,
evidence regarding a functional role of chaotic behavior
biological systems still remains elusive. Theoretical stud
suggest that ASR may be a widespread phenomenon,
cause the conditions leading to ASR are relatively gene
Biological systems such as neurons, ion channels, and
zymes often exhibit the appropriate nonlinearities, i.e., th
operate as threshold devices@7,8#. Because of the inevitable
presence of fluctuations in biological systems, noise
hancement may likely have a functional role in the detect
of subthreshold input signals including chaotic ones. Th
aspects suggest studying the signal processing capabilitie
nonlinear systems to different kinds of input signals in t
presence of noise.
ic
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The following system of two coupled relaxation-type non
linear oscillators is investigated@9#:

«
dx1
dt

5y12
x1
2

2
2
x1
3

3
, ~1!

dy1
dt

52x11a1A cos~vt !, ~2!

«
dx2
dt

5y22
x2
2

2
2
x2
3

3
, ~3!

dy2
dt

52x21a1mx11j~ t !, ~4!

where 0,«!1. In the following the system consisting o
Eqs.~1! and~2! @Eqs.~3! and~4!# is referred to asS1 ~S2!.
Simulations revealed that the oscillator exhibits a great va
ety of dynamical kinds of behavior when driven by wea
periodic forces@9#. Therefore the model provides a broa
dynamical spectrum for further investigations.

Equations~1! and ~2! exhibit a single steady state~stable
focus fora.0,a(11a),2A«, Hopf bifurcation ata50).
In the following the parameters are adjusted to yield a sta
focus for both systems.S1 is driven into a chaotic state by
harmonic forcing, and the resulting oscillations are used
the input signal forS2. The coupling constantm,0 is ad-
justed to yield a subthreshold input signal. A negative val
of m is chosen, because the relaxation oscillations exh
negative deflections and mainly occur in phase with the po
tive cycle of the cosine function~see Fig. 1 below!. S2 re-
sponds with relaxation oscillations~‘‘firing sequences’’!
when also exposed to a noise sourcej(t). In the simulations
exponentially correlated noise is used with zero-mean a
Gaussian-distributed amplitudes of variance^j2&5s2 @10#.

FIG. 1. Time series of the two oscillators, Eqs.~1!–~4!. The first oscil-
lator ~S1! is driven into a chaotic state by harmonic forcing. The two to
traces depict the harmonic driver~y-axis scaling61.75) and the resulting
chaotic oscillations of the variablex1. The chaotic signal is coupled into the
second oscillator~S2!. The latter is also exposed to noise. In the simulatio
exponentially correlated noise, with zero mean and Gaussian-distributed
plitudes, is used~variance:̂ j2&5s2; correlation time:t). The two bottom
traces depict the total input signal forS2 ~y-axis scaling60.75) and the
resulting oscillations of the variablex2. Parameters:«50.01, a50.1,
m520.25,A51, v518 s21, s50.1, andt50.01 s. Integration stepsize:
Dt5TP /1000 (TP52p/v'0.349 s!.
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The random lifetimes of the fluctuations are calculated
tN52t ln(R), whereR is a random number (0,R,1), and
t is the correlation time. The latter is much smaller than
other time scales. Application of nonwhite noise is preferr
because it provides a more realistic description for biologi
systems.

Figure 1 depicts the resulting oscillation patterns at
intermediate noise intensity level. Note that the aperio
input signal~S1! varies on a time scale that is comparable
the characteristic time of the responding system~S2!. This is
opposite to the models studied so far from the perspectiv
ASR @2#.

S1 exhibits a chaotic sequence of spike events that ma
occur in phase with the positive cycle of the cosine functio
Consequently, the spike events are phase locked with
external drive, and the interspike intervals are nearly inte
multiples of the driver’s periodTP . This can also be recog
nized in the structure of the interspike interval histogra
~ISIH! @Fig. 2~a!#. Almost nine-tenths of the intervals ar
located withinDT50.05 of integer multiples of the driver’s
period, including main contributions at three and five tim
TP . This kind of behavior has been observed in simi
relaxation-type systems before@6,11#. Examples include ex-
perimental investigations with periodically stimulated squ
giant axons and numerical simulations of the FitzHug
Nagumo model@6#. The specific distribution of the peaks i
the ISIH of S1 enables a quantitative comparison with t
activity of S2. The response pattern ofS2 ~Fig. 1, bottom
diagram! exhibits dynamic filtering characteristics, becau
the fast variations ofS1 are not reproduced.S2 does not
respond to every input spike but rather to sequences
spikes. Figures 2~b!–2~d! depict ISIH’s forS2 at three dif-
ferent noise intensity levels. At lower noise intensity leve
the ISIH’s display a distinct pattern of spike intervals inco

m-

FIG. 2. Interspike interval histograms~ISIH’s!. ~a! ISIH of the chaotic
oscillations of S1. ~b!–~d! ISIH’s for the resulting oscillations of the
coupled systemS2 at three noise intensity levels. The ISIH’s were calc
lated from the time series of the variablesx1,2. All deflections that exceeded
the thresholdx1,2

th 520.5 in the negative direction were counted as spik
and the interval between successive spikes was calculated. The binsi
the ISIH’s was set equal toDT50.05. Results do not change qualitatively
a different value forx1,2

th or a different binsize is used. The ISIH of th
chaotic oscillations in~a! was calculated on the basis ofN1552 560 inter-
spike intervals. For the ISIH’s of the coupled system in~b!–~d! N255000
intervals were counted. They-axis scaling is the same for diagrams~b!–~d!.
Parameters are the same as in Fig. 1, except~b! s50.03,~c! s50.1, and~d!
s50.3.
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porating characteristics of the chaotic input signal as wel
specific properties determined by the coupling of the syste
@Figs. 2~b! and 2~c!#. For example, in the ISIH in Fig. 2~c!
one can recognize sequences of peaks that are separat
the two main interspike intervals present in the chaotic in
signal ~the first sequence around T51.75,
2.80 and 3.85; the second aroundT53.50 and 4.55). The
individual peaks within the two sequences are separated
an interval corresponding to the second largest peak
T51.05 in the ISIH of the chaotic input signal. Furthermo
the two series are shifted against each other by an inte
corresponding to the largest peak atT51.75.

The preceding discussion suggests regardingS2 as a tem-
poral pattern detector that is capable of responding to
terns in the interspike interval distribution of the input sign
There is no linear relationship between the spike pattern
the chaotic input and the response pattern. Rather the
sponse pattern combines characteristics of the chaotic i
signal and dynamic properties of the detector given by
excitability.

Information processing is made possible by the prese
of noise, because the chaotic input signal is subthresh

FIG. 3. Correlation between the chaotic input signal and the respo
pattern.~a! The power norm defined by Eq. 5 as a function of increas
noise intensity. Data points were obtained in duplicate by averaging
NP520 000 periods of the harmonic driver ofS1. ~b! Correlation between
the mean interspike interval of a sequence of spikes in the chaotic i
signal producing a response spike, and the interspike interval of the
sponse. Each sequence of spikes in the chaotic input signal is compared
the response spike it produces. The procedure is illustrated in the schem
the right side of the figure, showing a part of the time series depicted in
1. In this example the interspike interval$1% of S1 is compared with$1% of
S2, and the mean of the interspike intervals$2.1% and $2.2% of S1 is com-
pared with$2% of S2. The diagram depicts the probability that the intersp
interval of the detector response is located withinDT560.05 of an integer
multiple of the mean interspike interval of the sequence of spikes in cha
input signal producing the response. The symbols represent mult
n51–5 ~circles: n51, squares:n52, triangles:n53, upside-down tri-
angles:n54, diamonds:n55). The probability was estimated by averagin
overN255000 response spikes and calculating the mean interspike inte
producing each response spike. Data points were obtained in triplicate
every data point shown in~a! and ~b!, a different sequence of the chaot
attractor and different sets of random numbers for calculating the n
amplitudes and correlation times were used. Error bars represent sta
deviations. Parameters are the same as in Fig. 1.
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Therefore the possibility exists that the information trans
is optimized at an intermediate noise intensity level. In
itively one may conclude that the characteristics of t
ISIH’s already reflect this behavior. At lower noise intens
ties the spectrum is flat, and contains only a few disti
peaks@Fig. 2~b!#. On the other hand, at very high noise le
els the resulting spectrum is concentrated around a si
broad peak that reflects the minimum response time of
detector to any kind of perturbations@Fig. 2~d!#. In this case
the ISIH contains only a small amount of information abo
the chaotic input signal. These observations suggest
there is an intermediate noise intensity range where the
formation transfer is maximally enhanced by noise. T
property can be demonstrated by calculating simple corr
tion measures@12#. For example, the correspondence b
tween the ISIH’s of the two systems is defined
^P1P2&/^P1P1&. HerePi denotes the probability for the oc
currence of a specific interspike interval and averaging
tends over all bins within the ISIH’s. A second method is
estimate the squared difference between the ISIH’s by ca
lating ^(P12P2)

2&. This method allows for an interestin
comparison to neural network theory. The ‘‘Hamming d
tance’’ is defined as the mean-square deviation between
input pattern and a stored pattern in a neural network@13#.
This function exhibits a minimal value for the stored patte
that most closely resembles the input pattern. Indeed, in
present case one can show that the squared difference
tween the ISIH’s of the chaotic input signal and the respo
signal exhibits a minimal value at intermediate noise inte
sity levels arounds50.1. In the same range the correspo
dence between the ISIH’s is maximal.

Although the two correlation measures defined above
ready reveal a behavior that can be identified as SR, th
functions only compare long-term-averaged properties
tween the input and output patterns. Because the input si
is a dynamic one, it is more meaningful to estimate the c
relation between the two systems on a dynamical basis.
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FIG. 4. Contour plot showing the probability for the occurrence o
specific ratio between the interspike interval of the detector~S2! and the
mean interspike interval of the chaotic signal~S1! producing the response
@see Fig. 3~b! for details#. The outermost lines represent a probability
P50.02. The probability increases in increments ofDP50.02 between
lines. Parameters are the same as in Fig. 1.
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ASR it has been suggested to use the power normC0 @2#. In
the present case this is written in the following way:

C05^~x12^x1& t!~x22^x2& t!& t , ~5!

where^ & t denotes time averaging. In Fig. 3~a! the absolute
value ofC0 is shown as a function of increasing noise inte
sities. The absolute value is used to allow for an easier c
parison with results obtained in other studies. The ac
value ofC0 is negative, because the variablesx1,2 exhibit
negative deflections, and there is a time delay betwee
sequence of spikes in the chaotic input signal and the
sponse of the detector. Figure 3~a! reveals that there is a
intermediate noise intensity range arounds50.1, where the
correlation between the oscillation patterns of the two s
tems is maximal. In this range the response sensitivity of
detector is optimized with regard to the chaotic input sign
In contrast at lower noise intensity levels the propability
spiking activity of S2 is low, whereas at high levels th
system mainly responds to the noise input.

Another way of quantifying the correlation between t
two systems is to compare directly each sequence of sp
in the chaotic input signal with the response spike it p
duces. This can be achieved by calculating the mean in
spike interval of the sequence of spikes in the chaotic in
signal producing the response spike, and comparing it w
the interspike interval of the response. Figure 3~b! depicts
the probability that the interspike interval of the detec
response is located withinDT560.05 of an integer multiple
of the mean interspike interval of the sequence in the cha
input signal producing the response. In Fig. 4 the glo
behavior is shown. One finds that for multiplesn51–5 the
probability exhibits a maximal value at intermediate no
intensity levels. The maximal probability for multiple
n51 and 2 is observed arounds50.1, corresponding to
the same noise intensity range where the absolute valu
the power norm exhibits a maximal value. At higher ord
pl
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muliples n53,4,5,. . . , themaximum of the probability is
shifted toward lower noise intensity levels. This behav
results because at lower noise intensity levels the spik
probability ofS2 decreases thus leading to prolonged int
spike intervals.

The results presented in this paper demonstrate that
excitable focusS2 is capable of detecting temporal patter
in the chaotic input signal. The information transfer is e
abled by the presence of noise, and is optimized at an in
mediate noise intensity level. This phenomenon can be
garded as a noise-induced coherence between the
oscillators. Because the input signal is aperiodic, the beh
ior can be interpreted as a form of ASR. However, in t
original definition the aperiodic input signal fluctuates s
chastically on a time scale that is slower than the charac
istic time of the responding system@2#. In contrast, in the
present case the deterministic chaotic input signal varies
time scale that is comparable to the characteristic time of
responding system. The results reveal that the sig
processing capabilities of the responding system are o
mized at an intermediate noise level. This shows that
phenomenon of ASR is not restricted to slowly varying inp
signals@14#.

In a recent experimental study it was observed that
reliability of spike timing in neocortical neurons is enhanc
by fluctuating input signals in comparison with consta
stimuli @15#. This suggests that cortical neurons respond
liably to fluctuating input signals. These observations exh
some similarities with the present investigations. In bo
cases the performance of the excitable system’s informa
processing capabilities is enhanced by aperiodic input
nals.

C.E. acknowledges financial support from the Fetzer
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