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Aperiodic stochastic resonance with chaotic input signals in excitable systems
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A model of two relaxation-type nonlinear oscillators is investigated. The chaotic spike sequence generated
by the first system is used as a subthreshold input signal for the second system. When also exposed to noise,
the latter behaves as a detector of temporal patterns in the chaotic input signal. Calculation of dynamic
correlation measures shows that the information transfer between the two systems is optimized by intermediate
noise levels. This behavior represents an interesting class of aperiodic stochastic re¢a8&)ceith deter-
ministic chaotic input signals. Results show that ASR is not restricted to slowly varying input signals.
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PACS numbsd(s): 05.40:+j, 05.45+b, 87.10+e

The phenomenon of stochastic resona(®@) character- aperiodic stimuli can be enhanced by noise. ASR has also
izes a behavior wherein the response of a nonlinear system figen demonstrated experimentally in biological sensory sys-
a weak periodic input signal is optimized by intermediatetems([4]. . _ . o .
noise levels[1]. Recently the original definition of SR has _ In this paper, ASR is studied with deterministic chaotic

been generalized into cases involving slowly varying aperiinStéad of stochastic input signals. Specifically, input signals
varying on a time scale that is comparable to the character-

this type of behavior the term aperiodic stochastic resonanc@cluding periodically stimulated squid giant axons, the cray-
(ASR) has been introducd@]. In theoretical studies of ASR  fish caudal photoreceptor as well as electrically excitable cell
one usually investigates the response of excitable systemgsemblies in cardiology and neuroscief6g]. However,
exhibiting an activation threshold, where both the subthreshevidence regarding a functional role of chaotic behavior in
old aperiodic stimulus and the noise are applied to a singl®iological systems still remains elusive. Theoretical studies
nonlinear element. With regard to biological applications,suggest that ASR may be a widespread phenomenon, be-
these nonlinear elements often consist of neuronal modefAuse the conditions leading to ASR are relatively general.
like the FitzHugh-Nagumo equations or the Hodgkin-HuxIeyB'Olog'Cal systems such as neurons, ion channels, and en-

equations. These two models were also integrated into sunfY™€S often exhibit the a}ppropriate nonlinearitie_s, i'.e" they
ming networks of elements coupled in paralld]. Studies operate as threshold.dewc_E?ss].. Bec_ause of the mev@able
showed that the signal detection performance in response gesence of fluc_tuat|ons n b'°|09'ca| systems, noise en-
ancement may likely have a functional role in the detection
of subthreshold input signals including chaotic ones. These
aspects suggest studying the signal processing capabilities of
* Author to whom correspondence should be addressed. Electronizonlinear systems to different kinds of input signals in the

address: jan.walleczek@forsythe.stanford.edu presence of noise.
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FIG. 1. Time series of the two oscillators, Eq$)—(4). The first oscil- FIG. 2. Interspike interval histogran{sSIH's). (a) ISIH of the chaotic

lator (S1) is driven into a chaotic state by harmonic forcing. The two top oscillations of S1. (b)—(d) ISIH's for the resulting oscillations of the
traces depict the harmonic drivéy-axis scaling+1.75) and the resulting coupled systen$2 at three noise intensity levels. The ISIH's were calcu-
chaotic oscillations of the variablg. The chaotic signal is coupled into the lated from the time series of the variables,. All deflections that exceeded
second oscillato(S2). The latter is also exposed to noise. In the simulations the thresholck‘fz: —0.5 in the negative direction were counted as spikes,
exponentially correlated noise, with zero mean and Gaussian-distributed anand the interval between successive spikes was calculated. The binsize of
plitudes, is usedvariance:(£2) = o; correlation time:r). The two bottom  the ISIH's was set equal thT=0.05. Results do not change qualitatively if
traces depict the total input signal f82 (y-axis scaling+0.75) and the a different value forx‘fz or a different binsize is used. The ISIH of the

resulting oscillations of the variable,. Parameterse=0.01, «=0.1, chaotic oscillations ifa) was calculated on the basis Wf =52 560 inter-
n=-0.25A=1,0=18 s 0=0.1, andr=0.01 s. Integration stepsize: spike intervals. For the ISIH’s of the coupled system(ti(d) N,=5000
At=Tp/1000 (Tp=27/w~0.349 3. intervals were counted. Theaxis scaling is the same for diagraiig—(d).

Parameters are the same as in Fig. 1, ex@®pt=0.03,(c) 0=0.1, and(d)
The following system of two coupled relaxation-type non- o=0.3.

linear oscillators is investigatd®]: . .
gate@] The random lifetimes of the fluctuations are calculated as

dx, x2 X3 ty=— 7In(R), whereR is a random number (@R<1), and
g =Yi— 5~ 5 (1 7 is the correlation time. The latter is much smaller than all
dt 2 3 . o : > <
other time scales. Application of nonwhite noise is preferred,
dy because it provides a more realistic description for biological
d—l =—x;+a+A cogwt), (2)  systems.
t Figure 1 depicts the resulting oscillation patterns at an
s 3 intermediate noise intensity level. Note that the aperiodic
% _, %2 X 3 input signal(S1) varies on a time scale that is comparable to
€ dt _yZ 2 3 ’ ( )

the characteristic time of the responding syst&2). This is
g opposite to the models studied so far from the perspective of
Yo ASR[2].
ar - Xetatmxi (), (4) S1 exhibits a chaotic sequence of spike events that mainly
occur in phase with the positive cycle of the cosine function.
where 0<e<1. In the following the system consisting of Consequently, the spike events are phase locked with the
Egs.(1) and(2) [Egs.(3) and(4)] is referred to a1 (S2).  external drive, and the interspike intervals are nearly integer
Simulations revealed that the oscillator exhibits a great varimultiples of the driver’s period@. This can also be recog-
ety of dynamical kinds of behavior when driven by weaknized in the structure of the interspike interval histogram
periodic forces[9]. Therefore the model provides a broad (ISIH) [Fig. 2(a)]. Almost nine-tenths of the intervals are
dynamical spectrum for further investigations. located withinAT=0.05 of integer multiples of the driver’s
Equations(1) and(2) exhibit a single steady statstable  period, including main contributions at three and five times
focus for a>0,a(1+ a)<2\/e, Hopf bifurcation ata=0). Tp. This kind of behavior has been observed in similar
In the following the parameters are adjusted to yield a stableelaxation-type systems befof®,11]. Examples include ex-
focus for both systemsS1 is driven into a chaotic state by perimental investigations with periodically stimulated squid
harmonic forcing, and the resulting oscillations are used agiant axons and numerical simulations of the FitzHugh-
the input signal forS2. The coupling constant <0 is ad- Nagumo mode|6]. The specific distribution of the peaks in
justed to yield a subthreshold input signal. A negative valughe ISIH of S1 enables a quantitative comparison with the
of u is chosen, because the relaxation oscillations exhibitctivity of S2. The response pattern 8 (Fig. 1, bottom
negative deflections and mainly occur in phase with the posidiagram exhibits dynamic filtering characteristics, because
tive cycle of the cosine functiofsee Fig. 1 beloyw S2 re-  the fast variations oS1 are not reproduceds2 does not
sponds with relaxation oscillation§‘firing sequences’}  respond to every input spike but rather to sequences of
when also exposed to a noise soué&t). In the simulations  spikes. Figures (®)—2(d) depict ISIH’s for S2 at three dif-
exponentially correlated noise is used with zero-mean anéerent noise intensity levels. At lower noise intensity levels
Gaussian-distributed amplitudes of variaq@@)=¢? [10].  the ISIH’s display a distinct pattern of spike intervals incor-
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FIG. 4. Contour plot showing the probability for the occurrence of a

FIG. 3. Correlation between the chaotic input signal and the respons&Pecific ratio between the interspike interval of the dete¢B®) and the
pattern.(a) The power norm defined by Eq. 5 as a function of increasing mean interspike interval of the chaotic sigri8ll) producing the response

noise intensity. Data points were obtained in duplicate by averaging ovefS¢€ Fig- 8) for detaild. The outermost lines represent a probability of
Np=20 000 periods of the harmonic driver L. (b) Correlation between P =0-02. The probability increases in increments /P =0.02 between
the mean interspike interval of a sequence of spikes in the chaotic inpdines- Parameters are the same as in Fig. 1.

signal producing a response spike, and the interspike interval of the re- o . . .

sponse. Each sequence of spikes in the chaotic input signal is compared withherefore the possibility exists that the information transfer
the response spike it produces. The procedure is illustrated in the scheme ¢& optimized at an intermediate noise intensity level. Intu-
the right side of the figure, showing a part of the time series depicted in Figitively one may conclude that the characteristics of the

1. In this example the interspike intervidl} of S1 is compared wit{1} of ; . . .. .
S2, and the mean of the interspike intervésl} and{2.2} of S1 is com- ISIH’s already reflect this behavior. At lower noise intensi

pared with{2} of S2. The diagram depicts the probability that the interspike ti€S the spectrum is flat, and contains only a few distinct
interval of the detector response is located withifi= +0.05 of an integer ~ peaks[Fig. 2(b)]. On the other hand, at very high noise lev-
multiple of the mean interspike interval of the sequence of spikes in chaotiels the resulting spectrum is concentrated around a single
:‘PT Ssig(réﬁ'clgg"r’]“‘:ilngsttz r;iipogset-r i;]h?eg‘mb??'su riggsdir\‘,tnﬂ:'tip'eﬁroad peak that reflects the minimum response time of the
anglesn=4, diamondénES). The prt;babili?y was es£im2ted by averaging detector to any kind of perturbatiofig. 2(d)] In thI_S case
over N,=5000 response spikes and calculating the mean interspike intervame ISIH ClonFa'nS oqu a small amount of mformauon about
producing each response spike. Data points were obtained in triplicate. Fdhe chaotic input signal. These observations suggest that
every data point shown ife) and (b), a different sequence of the chaotic there is an intermediate noise intensity range where the in-
attra(_:tor and different s_ets _of random numbers for calculating the nois§grmation transfer is maximally enhanced by noise. This
gmplltpdes and correlation times were u§ed.. Error bars represent standabqoperty can be demonstrated by calculating simple correla-
eviations. Parameters are the same as in Fig. 1. .
tion measureq12]. For example, the correspondence be-

porating characteristics of the chaotic input signal as well at¢ween the ISIH's of the two systems is defined by
specific properties determined by the coupling of the systeméP,P,)/(P,P,). HereP; denotes the probability for the oc-
[Figs. 2b) and Zc)]. For example, in the ISIH in Fig.(2) currence of a specific interspike interval and averaging ex-
one can recognize sequences of peaks that are separatedtbyds over all bins within the ISIH’s. A second method is to
the two main interspike intervals present in the chaotic inpuestimate the squared difference between the ISIH’s by calcu-
signal  (the first sequence around T=1.75, lating ((P,—P5,)?). This method allows for an interesting
2.80 and 3.85; the second aroufie-3.50 and 4.55). The comparison to neural network theory. The “Hamming dis-
individual peaks within the two sequences are separated hyance” is defined as the mean-square deviation between an
an interval corresponding to the second largest peak ahput pattern and a stored pattern in a neural netwWf.
T=1.05 in the ISIH of the chaotic input signal. Furthermore, This function exhibits a minimal value for the stored pattern
the two series are shifted against each other by an intervahat most closely resembles the input pattern. Indeed, in the
corresponding to the largest peakTat 1.75. present case one can show that the squared difference be-

The preceding discussion suggests regar@aas a tem- tween the ISIH’s of the chaotic input signal and the response
poral pattern detector that is capable of responding to pasignal exhibits a minimal value at intermediate noise inten-
terns in the interspike interval distribution of the input signal. sity levels aroundr=0.1. In the same range the correspon-
There is no linear relationship between the spike pattern oflence between the ISIH's is maximal.
the chaotic input and the response pattern. Rather the re- Although the two correlation measures defined above al-
sponse pattern combines characteristics of the chaotic inpueady reveal a behavior that can be identified as SR, these
signal and dynamic properties of the detector given by itfunctions only compare long-term-averaged properties be-
excitability. tween the input and output patterns. Because the input signal

Information processing is made possible by the presencis a dynamic one, it is more meaningful to estimate the cor-
of noise, because the chaotic input signal is subthresholdelation between the two systems on a dynamical basis. For
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ASR it has been suggested to use the power mogrf2]. In muliplesn=3,4,5,. .., themaximum of the probability is
the present case this is written in the following way: shifted toward lower noise intensity levels. This behavior
results because at lower noise intensity levels the spiking
Co=((X1={(X2)0) (X2 = (X2)t) )1, ©) probability of S2 decreases thus leading to prolonged inter-

. . . spike intervals.

whlere<f)ct d_enor:es time a\f/era%mg. :,n. F|g(a}$'the apsolgt;a The results presented in this paper demonstrate that the
value ofto IS Snown as a function ot Incréasing noise INten- o, i 16 focuss2 is capable of detecting temporal patterns
sities. The absolute value is used to allow for an easier com; the chaotic input signal. The information transfer is en-

palnsonfv(glth resultst. obtagned In (i;her St.u?)'es' Thﬁ.bicm bled by the presence of noise, and is optimized at an inter-
value of Co is negative, because the variables, exhibi mediate noise intensity level. This phenomenon can be re-

negative deflect_ions,_and there i_s a time _delay between Sarded as a noise-induced coherence between the two
sequence of spikes in the chaotic input signal and the re:

X . oscillators. Because the input signal is aperiodic, the behav-
;p;onse d(?f tthe Qete'cttor. I?tlgureéaB revealsd:tgalt thﬁre I?han ior can be interpreted as a form of ASR. However, in the
n errPet_ 1a % ntmse |ntﬁn5| y Fﬁ‘”tge arotttﬁ ' ’fvf[’h erte € original definition the aperiodic input signal fluctuates sto-
correlation between the osciiiation patterns ot tné two Sys'chastically on a time scale that is slower than the character-
tems is maximal. In this range the response sensitivity of th

detector | timized with d to the chaofic input si Iﬁ:’stic time of the responding systef@]. In contrast, in the
etector 1S optimizeéd with regara 1o the chaolic input signa ‘present case the deterministic chaotic input signal varies on a
In contrast at lower noise intensity levels the propability for

7 e ) ; time scale that is comparable to the characteristic time of the
spiking act'|V|ty of S2 is low, whe.rea.s at high levels the responding system. The results reveal that the signal-
system mainly responds to the noise input.

g : rocessing capabilities of the responding system are opti-
Another way of quantifying the correlation between thep g cap P g sy b

W ¢ s t directl h f spik mized at an intermediate noise level. This shows that the
two Systems IS to compare directly each sequence ot Spi enomenon of ASR is not restricted to slowly varying input
in the chaotic input signal with the response spike it pro-

) . ) M “signals[14].
duces. This can be achieved by calculating the mean inter- In a recent experimental study it was observed that the

spike interval of the sequence of spikes in the chaotic InpuFeliability of spike timing in neocortical neurons is enhanced

tsri]gn_altprod_llicir_lgtthe Iresfp;)hnse spike, ang_corgp%ring itt Wm?)y fluctuating input signals in comparison with constant
e interspike interval of the response. Figux)3epicts stimuli [15]. This suggests that cortical neurons respond re-

the probap|lllty t?a(} thti'k&r_llftirip(l)kgslntferva}l tOf the dﬁ.telc'[orliably to fluctuating input signals. These observations exhibit
résponse Is focated wi ==0.Looraninteger mullipie  some similarities with the present investigations. In both

of the mean interspike interval of the sequence in the chaotig, Joq 4he performance of the excitable system’s information

input signal producing the response. In Fig. 4 the globa rocessing capabilities is enhanced by aperiodic input sig-
behavior is shown. One finds that for multiples 1—-5 the nals. g cap yap P 9

probability exhibits a maximal value at intermediate noise

intensity levels. The maximal probability for multiples  C.E. acknowledges financial support from the Fetzer In-
n=1 and 2 is observed around=0.1, corresponding to stitute. Work at the Bioelectromagnetics Laboratory was
the same noise intensity range where the absolute value stipported by the Fetzer Institute and the U.S. Department of
the power norm exhibits a maximal value. At higher orderEnergy.
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